- ●工学部(電子情報工学科/電気工学科)
- ●情報工学部(情報工学科/情報通信工学科)

1	1	2	3	4	(5)	6	7	8	9	(10)
	$\frac{a-6}{4}$	26	$\frac{3}{4}$	$\frac{\sqrt{7}}{4}$	5	6	-5	4	0.6990	0.7781

2	1 2		3	4	(5)	6	
	$\left(\frac{a}{2}, -\frac{a^2}{4}\right)$	1	90	$45(\sqrt{2}+1)$	$45(\sqrt{2}-1)$	$45(3-\sqrt{2})$	

3 (1) f(x) を微分すると

$$f'(x) = (x^3 - 3x^2 - 9x)' = (x^3)' - 3(x^2)' - 9(x)'$$
$$= 3x^2 - 3 \cdot 2x - 9 \cdot 1 = 3x^2 - 6x - 9$$

(2) $f'(x)=3x^2-6x-9=3(x^2-2x-3)=3(x-3)(x+1)$ より、f'(x)=0 を満たすx の値はx=-1、3 である。また、f(-1)、f(3) を計算するとf(-1)=5、f(3)=-27 より、増減表は次のようになる。

x		-1		3	
f'(x)	+	0	_	0	+
f(x)	1	極大 5	7	極小 -27	1

よって、x=-1 のとき極大値 5、x=3 のとき極小値 -27 である。

(3) 与えられた方程式を変形すると

$$x^3 - 3x^2 - 9x = a$$

である。よって、この方程式の実数解の個数は、3次関数 y=f(x) のグラフと直線 y=a の共有点の個数に一致する。 (2)の増減表を用いて関数 y=f(x) のグラフを描くことで、次がわかる。

a < -27 または 5 < a のとき、共有点の個数は 1 個

a=-27, 5のとき, 共有点の個数は2個

-27<a<5のとき, 共有点の個数は3個

従って、求めるaの値の範囲は-27 < a < 5である。

4 [A]

(1)
$$\overrightarrow{CA} = \overrightarrow{CO} + \overrightarrow{OA} = -\overrightarrow{OC} + \overrightarrow{OA} = -\overrightarrow{c} + \overrightarrow{a} = \overrightarrow{a} - \overrightarrow{c}$$

 $\overrightarrow{CB} = \overrightarrow{CO} + \overrightarrow{OB} = -\overrightarrow{OC} + \overrightarrow{OB} = -\overrightarrow{c} + \overrightarrow{b} = \overrightarrow{b} - \overrightarrow{c}$

(2)

$$\overrightarrow{OP} = \overrightarrow{OC} + \overrightarrow{CP} = \overrightarrow{c} + s \overrightarrow{CA} + t \overrightarrow{CB}$$
$$= \overrightarrow{c} + s(\overrightarrow{a} - \overrightarrow{c}) + t(\overrightarrow{b} - \overrightarrow{c}) = s \overrightarrow{a} + t \overrightarrow{b} + (1 - s - t) \overrightarrow{c}$$

(3) (2)よりOQは実数 s, tを用いて

$$\overrightarrow{OQ} = s\overrightarrow{a} + t\overrightarrow{b} + (1-s-t)\overrightarrow{c}$$

 $\overrightarrow{OQ} = k \overrightarrow{OF}$ が成り立つ。 $\overrightarrow{OF} = \overrightarrow{OA} + \overrightarrow{AD} + \overrightarrow{DF} = \overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC} = \overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c}$ より、

$$\overrightarrow{OQ} = k(\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c}) = k\overrightarrow{a} + k\overrightarrow{b} + k\overrightarrow{c}$$

である。4 点 O, A, B, C は同一平面上にないから、 \overrightarrow{OQ} \overrightarrow{od} , \overrightarrow{b} . \overrightarrow{c} を用いた表し方はただ一通りである。よって、

$$\begin{cases} s = k \\ t = k \\ 1 - s - t = k \end{cases}$$

が得られる。これを解いて $k=\frac{1}{3}$ である。よって, $\frac{|\overrightarrow{\mathrm{OQ}}|}{|\overrightarrow{\mathrm{OF}}|}=\frac{1}{3}$ である。

4 [B]

- (1) $f'(x) = (x)' 2(\cos x)' = 1 2(-\sin x) = 1 + 2\sin x$ $f''(x) = (1)' + 2(\sin x)' = 2\cos x$
- (2) $0 < x < 2 \pi$ の範囲で方程式 $f''(x) = 2 \cos x = 0$ を解くと $x = \frac{\pi}{2}$, $\frac{3}{2}\pi$ である。 $0 < x < \frac{\pi}{2}$ のとき f''(x) > 0, $\frac{\pi}{2} < x < \frac{3}{2}\pi$ のとき f''(x) < 0, $\frac{3}{2}\pi < x < 2\pi$ のとき f''(x) > 0 であるから、関数 y = f(x) のグラフは $0 < x < \frac{\pi}{2}$ で下に凸, $\frac{\pi}{2} < x < \frac{3}{2}\pi$ で上に凸, $\frac{3}{2}\pi < x < 2\pi$ で下に凸である。 よって、変曲点の x 座標は $x = \frac{\pi}{2}$, $\frac{3}{2}\pi$ である。また、 $f\left(\frac{\pi}{2}\right) = \frac{\pi}{2}$, $f\left(\frac{3}{2}\pi\right) = \frac{3}{2}\pi$ より、変曲点は $\left(\frac{\pi}{2}, \frac{\pi}{2}\right)$, $\left(\frac{3}{2}\pi, \frac{3}{2}\pi\right)$ である。
- (3) (2)より(a, f(a)) = $\left(\frac{\pi}{2}, \frac{\pi}{2}\right)$, (b, f(b)) = $\left(\frac{3}{2}\pi, \frac{3}{2}\pi\right)$ であり、従って、 ℓ の方程式は y=x である。 ここで、 $0 < x < \frac{\pi}{2}$ では、 $x-f(x)=2\cos x>0$ より、 直線 ℓ は曲線 y=f(x) より上側にある。 一方、 $\frac{\pi}{2} < x < \frac{3}{2}\pi$ では、 $x-f(x)=2\cos x<0$ より、 直線 ℓ は曲線 y=f(x) より下側にある。よって、 $S_1 = \int_{0}^{\frac{\pi}{2}} \{x-f(x)\} dx = \int_{0}^{\frac{\pi}{2}} 2\cos x dx = 2$

$$S_1 = \int_0^2 \{x - f(x)\} dx = \int_0^2 2\cos x dx = 2$$

$$S_2 = \int_{\frac{\pi}{2}}^{\frac{3}{2}\pi} \{f(x) - x\} dx = -\int_{\frac{\pi}{2}}^{\frac{3}{2}\pi} 2\cos x dx = 4$$

であり、従って $S_1+S_2=6$ である。

- ●工学部(生命環境化学科/知能機械工学科)
- ●情報工学部(情報システム工学科/情報マネジメント学科)
- ●社会環境学部(社会環境学科)

1	1)			4		6			9	10
	$-\frac{1}{2}$	$-\frac{5}{2}$	$\frac{5\sqrt{7}}{14}$	$\frac{3\sqrt{3}}{2}$	3	13	120	210	2	-1

2	1	2	3	4	(5)	6
	1/4	$3-2\sqrt{2}$	2	<u>15</u> 4	-1	0

- **B** (1) $f'(x) = 3x^2 3(a+3)x + 3(a+2)$ $\downarrow h$, f'(1) = 3 3(a+3) + 3(a+2) = 0
 - (2) $f'(x)=3x^2-3(a+3)x+3(a+2)=3(x-1)(x-a-2)$ なので、f'(x)=0 のとき、x=1、a+2 となる。
 - (i) $a \neq -1$ のとき、x=1 の前後で f'(x) の符号が変化するので、f(x) は x=1 で極値をとる。

あり、 $1 \le x \le 2$ のとき $f(x) \le x+1$ であることに注意すると、求める面積 S は

- (ii) a=-1 のとき、 $f'(x)=3(x-1)^2$ となる。f'(1)=0 であるが、 $x\ne1$ のとき f'(x)>0 となるから、f(x) は常に単調に増加する。よって極値をとらない。
- (3) a=-1 のとき、 $f(x)=x^3-3x^2+3x+1=(x-1)^3+2$ となり、曲線 y=f(x) は $y=x^3$ のグラフを x 軸方向に 1、y 軸方向に 2 平行移動したものとなる。曲線 y=f(x) と直線 y=x+1 の交点の x 座標を求めると、 $x^3-3x^2+3x+1=x+1$ より、x(x-1)(x-2)=0 となり、x=0、1、2 である。 $0 \le x \le 1$ のとき $f(x) \ge x+1$ で

$$S = \int_0^1 (f(x) - (x+1)) dx + \int_1^2 (x+1 - f(x)) dx$$

$$= \int_0^1 (x^3 - 3x^2 + 2x) dx + \int_1^2 (-x^3 + 3x^2 - 2x) dx$$

$$= \left[\frac{x^4}{4} - x^3 + x^2 \right]_0^1 + \left[-\frac{x^4}{4} + x^3 - x^2 \right]_1^2$$

$$= \frac{1}{2}$$

- 4 [A]
 - (1) $a_n=9+d(n-1)$ であることに注意すると、 $a_1+a_2+a_3<2025$ より 27+3d<2025 となり、d<666 となる。よって、これを満たす最大の自然数 d は 665 である。数列 $\{a_n\}$ は初項 9、公差 665 の等差数列であるので、一般項は $a_n=9+665(n-1)=665n-656$ と表される。
 - (2) 等差数列の和の公式より初項から第 30 項までの和 S_{30} は $S_{30} = \frac{30}{2}(18+29d) = 15(18+29d)$ となる。 $S_{30} < 2025$ より, $d < \frac{117}{29}$ となり,これを満たす最大の自然数 d は 4 である。数列 $\{a_n\}$ は初項 9,公差 4 の等差数列であるので,一般項は $a_n = 9 + 4(n-1) = 4n + 5$ と表される。
 - (3) b, は次のように変形されることに注意する。

$$b_n = \frac{1}{\sqrt{a_n} + \sqrt{a_{n+1}}} \cdot \frac{\sqrt{a_n} - \sqrt{a_{n+1}}}{\sqrt{a_n} - \sqrt{a_{n+1}}} = \frac{\sqrt{a_n} - \sqrt{a_{n+1}}}{a_n - a_{n+1}}$$

(2)より数列 $\{a_n\}$ は公差 4 の等差数列であったから、任意の自然数 n に対して $a_n - a_{n+1} = -4$ である。よって

$$b_n = \frac{\sqrt{a_{n+1}} - \sqrt{a_n}}{4}$$

となる。この数列の第n項までの和Sは以下のようになる。

$$S = \frac{1}{4} \{ (\sqrt{a_2} - \sqrt{a_1}) + (\sqrt{a_3} - \sqrt{a_2}) + \dots + (\sqrt{a_{n+1}} - \sqrt{a_n}) \}$$

$$= \frac{1}{4} (\sqrt{a_{n+1}} - \sqrt{a_1})$$

$$= \frac{\sqrt{4n+9} - 3}{4}$$

4 [B]

(1) 求める面積は

$$S = \int_{1}^{e} \frac{1}{x} dx = [\log |x|]_{1}^{e} = 1$$

(2) それぞれの面積は

$$S_1(a) = \int_1^a \frac{1}{x} dx = [\log |x|]_1^a = \log a$$

$$S_2(a) = \int_1^a \log x dx = [x \log x]_1^a - \int_1^a dx = a \log a - a + 1$$

となる。よって、 $\log a = a \log a - a + 1$ となり、整理すると $(a-1)(\log a - 1) = 0$ となる。a > 1 であることに注意すると、 $\log a = 1$ すなわち a = e となる。

(3) 回転体の体積 V(a) は

$$V(a) = \pi \int_{1}^{a} (\log x)^{2} dx$$

$$= \pi [x(\log x)^{2}]_{1}^{a} - \pi \int_{1}^{a} 2 \log x dx$$

$$= \pi a (\log a)^{2} - 2\pi \int_{1}^{a} \log x dx$$

となる。ここで、(2)の S₂(a) の計算結果より、

$$V(a) = \pi a(\log a)^2 - 2\pi a \log a + 2\pi a - 2\pi$$

となる。よって、求める a について $\pi a(\log a)^2 - 2\pi a \log a + 2\pi a - 2\pi = 2\pi a - 2\pi$ となり、整理すると $\pi a(\log a)(\log a - 2) = 0$ となる。a > 1 であることに注意すると、 $\log a = 2$ すなわち $a = e^2$ となる。